Articles by admin

You are currently browsing admin’s articles.

We got a Mazda CX-5 and so far we’re pretty happy with it. We wanted an organizer in the back, though, to help prevent things from falling over and rolling around, and we wanted it to be easy to collapse if necessary. Here’s how we made one for less than $15. Add a few extra dollars for bungee cords to hold the organizer in place if you want. (Mazda recommends that you secure the stuff you put in the back.)

The bins were designed to accommodate our reusable grocery bags, with some tight nooks in the back for things like baseballs, pencil kits, and books. (The kids can open up the middle section and reach back.) Placed close to the back seats, this design still allows access to things stored with the spare tire. It can be disassembled pretty quickly if necessary. 

20130805-131227.jpg

Supplies:

  • 1 piece of 1x6x10′ pine (whiteboard) lumber, and be sure it’s not splitting at the ends. This should cost about $10 at the home center — ask them to cut it in half for you and you’ll be able to fit it into the CX-5.
  • 1 can of flat black spray paint. I got Painter’s Touch, which was labeled “primer + paint” for less than $4.
  • 2 bungee cords, approximately 18″ long unstretched. We had these laying around from a Harbor Freight assortment kit we got a while back. They’re probably about $1 each, and are use to secure both the organizer to the floor, and secure bags in the two outer bins.
  • 4 3/4″ felt pads. These are really optional, but might help prevent damage to the interior of the car. We had them on had, but you can also pick them up at the home center for a couple dollars.

Directions:

  1. From each 5-foot length, cut one 41″ board, and one 17″ board.
  2. On both 17″ boards, measure in 1 3/4″ from each end and cut a 3/4″ slot across half the width of the board. Cut both boards together.
  3. On both 41″ boards, measure 13″ from each end and cut a 3/4″ slot across half the width of the board. Cut both boards together.
  4. Also on both 41″ boards, measure about 2 1/2″ from each end and drill a 1/2″ hole so it overlaps the edge of the board enough to fit a bungee cord. Do this on the opposite side from the slots if you want the 41″ boards to hold down the 17″ boards, or on the same side to make the weak ends of the 17″ boards a little more protected from accidental breaks.
  5. Sand, assemble, and paint.
  6. Attach a felt pad to the middle of the end of each 41″ board, and install into car. Run the bungee from the back hook, through the drill holes, and up to the front hook. You can tie a knot in the bungee where it passes through the board to help keep it in place if it slides.

Boards

It’s important to note that the small sections of 17″ board on the outside of the 41″ boards will be weak because there’s only 2.5″ against the grain holding them in place. If you’re going to be disassembling/reassembling this a lot, you might want to glue some blocks to those weak areas to strengthen them.

Share

Here’s the complete Bill of Materials (BOM) for the club’s Prusa i2 build. It’s sorted first by type of material, then by assembly. The number at the left is the part number in the order it was recorded from a reference machine.

Direct link here.

Share

Special Content: Repraps for Education

This is part of a series of posts about starting and facilitating a project-based 3D printer club at a local elementary school, with the ultimate goal of replicating the program at schools everywhere. We'll be posting as many details as possible, including lesson plans and supporting materials. For more information about the entire project, including a listing of posts related to it, please visit the 3D Printer Club for Schools project page. 

Here’s a certificate of achievement that you can use for the kids who complete the project at your school. We had two titles: The kids who were in the club were awarded “3D Printer Maker” certificates, and those that helped out a lot (usually younger siblings) were awarded “”3D Printer Apprentice” certificates. The text of the certificate is shown below the image.

Download the SVG file here: 3D Printer Club: Lesson Plans and Other Documents

3D Printer Club Certificate of Achievement

3D Printer Club Certificate of Achievement

The border features the typical honeycomb-style infill pattern that 3D prints often use.

Here’s the text of the certificate:

Let it be known that on this twenty-fourth day of May, two thousand and thirteen,

Student Name

is hereby honored and recognized for outstanding achievement as part of an awesome team of awesome kids who built a fully functional 3D printer—from scratch, having learned tons and tons of cool stuff along the way, including blogging, accounting, sourcing, assembly, robotics, electronics, management, teamwork, and a bunch of other awesome things too numerous to list. This exceedingly rare and highly coveted document therefore confers upon the aforementioned Maker, the esteemed, hard-earned, and frankly just awesome title of

3D Printer Maker

with all the rights, privileges, and honors appertaining thereunto.

Share

In this video, Jacob shows an easy way to set up a PCB heatbed for your 3D printer — a method that allows the entire surface of the heatbed to be used for printing. He also shows how to cut inexpensive certificate frame glass to size with some simple tools. We’ve had printers with a heatbed setup just like this running without incident for over a year.

Supplies used: PCB Heatbed (with high-temperature wire attached), glass (same size as heatbed), scissors, kapton tape, four M3 nuts and screws (12-16mm), screwdriver & pliers, thermistor, thermistor lead insulation (kapton tape works, too), and pipe insulation tape. See below for glass cutting tools.

Glass Cutting Tools & Materials: Safety glasses, sheet glass (certificate frame glass works well), glass cleaner, paper towels, permanent marker, ruler, cutting oil, straight edge, glass cutting tool, breaking edge, leather gloves, and sandpaper.

A project-based RepRap build is the perfect way to bring STEM and many other disciplines to your school. To learn more about starting a 3D printer build at your school, visit http://www.thefrankes.com/wp/?page_id=2766.

Music

Share

Special Content: Repraps for Education

This is part of a series of posts about starting and facilitating a project-based 3D printer club at a local elementary school, with the ultimate goal of replicating the program at schools everywhere. We'll be posting as many details as possible, including lesson plans and supporting materials. For more information about the entire project, including a listing of posts related to it, please visit the 3D Printer Club for Schools project page. 

Here’s a video to the team from software developer and RepRap expert Alessandro Ranellucci, the creator of the extremely popular Slic3r software.

Share

Random wires are ugly, so we decided to ask for some spare spiral binding coil at the local office supply store and walked away with a handful of 6mm and 10mm coils. They make for very nice wire wrap.

Spiral Binding Coil Wire WrapSpiral Binding Coil Wire Wrap

Spiral Binding Coil Wire Wrap

Share

We made a video to show the difference in noise between the Pololu A4988 Stepper Motor Driver Carrier, which has 1/16 steps, and the DRV8825 Stepper Motor Driver Carrier which has 1/32 steps. These drivers are common in RepRap 3D printers. The resistor soldered onto the DRV8825 is not required on their latest versions of the board.

The goal for this video was originally to capture the difference in sound that I noticed when I switched from one driver to the other, and this test seemed to do that. I updated it to be a bit more scientific than it was originally by carefully setting the current limit, adjusting the steps per unit, and including details about the setup.

For this test:

  • 12.17V DC 
  • Kysan 1124090 (1.8°, 1.5A/phase) stepper motor
  • 18T Aluminum GT2 2mm Belt/Pulley
  • PLA bushings on W1 tool steel smooth rod with white lithium grease
  • 1.3A current limit using VREF method
Share

We met with Congressman Price and several other US representatives to promote open hardware 3D printing — and how they fit into STEM education in particular.

CongressmanPricePhoto_sm Congressman Foster

Share

Special Content: Repraps for Education

This is part of a series of posts about starting and facilitating a project-based 3D printer club at a local elementary school, with the ultimate goal of replicating the program at schools everywhere. We'll be posting as many details as possible, including lesson plans and supporting materials. For more information about the entire project, including a listing of posts related to it, please visit the 3D Printer Club for Schools project page. 

We’ve learned a lot while implementing our 3D Printer Club project plan at a local elementary school, and in the process, we’ve come up with a number of guidelines and ideas to help you get started doing the same thing in your own school. We’ll use this page as a landing page for resources and information on how to get started. As we add new content, we’ll link to it from here, so please check back from time to time for new articles.

Who Is This For?

Parents, teachers, students, makers, administrators, and more—techie or not. We’ve found that a number of different types of people would like to get started with a project like this, and each one has a slightly different perspective and purpose. While it’s not easy to write a single article for multiple audiences, we’ll try to address these different perspectives throughout. At the end of the day, though, all you really need is time, dedication, and some help from time to time.

What Are We Starting?

First of all, we recommend a project-based approach in a weekly after-school club format—the journey is a big part of the destination here, and an after school club should allow you to pull interested students from a number of grade levels, get a bit more help from parents, and potentially even pull in resources from other schools. The weekly format allows enough time between meetings for individual teams to work independently.

With the help of teachers, parent volunteers, and possibly a couple of older students, the members of the 3D Printer Club will be responsible for researching, documenting, sourcing, building, and operating an open hardware 3D printer. “Open hardware” means that the technology has been developed upon over a period of time by many (possibly hundreds or thousands) or people with a genuine interest in improving and promoting the technology and making it available for the greater good. It’s an organic approach to hardware development, and there are usually no patents or copyrights to contend with. Like Wikipedia is to information, open hardware is to physical technology.

Find a Subject Matter Expert

Some parents or teachers may be perfectly comfortable diving into this project with little or no expertise, but others may feel it’s too far over their heads. In either case, we recommend locating a subject matter expert (SME) to assist you throughout the process. This should be a person—hopefully nearby—with some experience in open hardware 3D printers. Contact a local hackerspace (visit hackerspaces.org to find one) and explain that you need some help with a 3D printer build at a local school.

Hackerspaces are part of the “maker” culture—they are groups of people who like to make or build things themselves, and they will almost certainly have someone with the expertise required and interest required to help with an open hardware 3D printer build. If there is no local hackerspace or if you’re having trouble finding a local SME, contact different hackerspaces in your state or region—most members of the open hardware 3D printer community are willing to help remotely (for example via Skype, email, or chat) as well.

The SME will be a valuable resource throughout the build and will be able to help your team solve problems as they move forward with the build. The SME should also be able to help you arrange demonstrations, or provide access to a reference machine or two to base your build upon.

Share

We got an older laptop to use for one of our 3D printer builds, and so we set out to set it up for 3D printing. The laptop is an IBM ThinkPad T41, and because the processor doesn’t support PAE, we weren’t able to use the latest versions or Ubuntu or Mint. Mint 13 installed okay, but the default window managers gave us some trouble, so we ended up installing Lubuntu 12.04. This version doesn’t require PAE.

After installing and updating the operating system, we set out to install pronterface (Printrun) and slic3r from the git repository. Here’s what we did:

First install python support for printrun, and git.

sudo apt-get install python-serial python-wxgtk2.8 \
 python-pyglet python-tk
sudo apt-get install git

Create a directory for RepRap stuff, and clone Printrun to it from the git repository.

mkdir RepRap
cd RepRap/
git clone https://github.com/kliment/Printrun.git

Next comes build-essential, perl, and cpanminus — all required for slic3r.

sudo apt-get install build-essential libgtk2.0-dev \
 libwxgtk2.8-dev libwx-perl libmodule-build-perl \
 libnet-dbus-perl
sudo apt-get install cpanminus

Go into the Printrun directory, get slic3r, and then dive into that directory where we’ll test it to be sure it all works.

cd Printrun/
git clone http://github.com/alexrj/Slic3r.git
cd Slic3r/

Grab the cpan modules required for slic3r, and test it to be sure it loads up properly.

sudo cpanm Boost::Geometry::Utils Math::Clipper \
 Math::ConvexHull Math::ConvexHull::MonotoneChain \
 Math::Geometry::Voronoi Math::PlanePath Moo Wx
./slic3r.pl

Step up one directory and make sure pronterface works well.

cd ..
python ./pronterface.py
Share

« Older entries